

Placer County Office of Education

RFP for Lease-Leaseback Construction Services

*Office Building Tenant Improvements, Annex Building Alterations,
& Site Improvements @ Various Sites*

ADDENDUM NO. 4

Friday, September 15, 2023

District: Placer County Office of Education
360 Nevada Street
Auburn, CA 95991
Contact: Martin Fregoso

Job Location: Various Three (3) Sites:
1. 1400 Stanford Ranch / Rocklin, CA 95765
2. 365 Nevada Street / Auburn, CA 95603
3. 360 Nevada Street / Auburn, CA 95603

Architect: Hibser Yamauchi Architects, Inc.
4602 2nd St
Davis, CA 95618

This Addendum has been prepared to clarify, modify, delete, or add to the drawings and/or specifications for the above referenced project, and revisions to items listed here shall supersede description thereof prior to the above stated date. All conditions not specifically referenced here shall remain the same. It is the obligation of the Prime Contractor to make subcontractors aware of any items herein that may affect submitted bids. Acknowledge receipt of this addendum by inserting its number and date in the bidding documents. Failure to do so may subject bidder to disqualification. All addenda items refer to the plans and specifications unless specifically noted otherwise.

PART A – GENERAL

None.

PART B – BIDDING AND CONTRACT REQUIREMENTS

4.1 Pre-Bid RFIs

A. **CLARIFICATION** of pre-bid requests for information. All pre-bid RFIs are due by September 19, 2023 at 5:00pm.

PART C – CHANGES TO TECHNICAL SPECIFICATIONS

4.2 1400 Stanford Ranch – Section 09 65 13.23 – Resilient Stair Treads and Risers

A. **ADD** section in its entirety. **See attached ‘Section 09 65 13.23.’**

PART D – CHANGES TO DRAWINGS

None.

Placer County Office of Education

RFP for Lease-Leaseback Construction Services

*Office Building Tenant Improvements, Annex Building Alterations,
& Site Improvements @ Various Sites*

ADDENDUM NO. 4

PART E – RFI RESPONSES

1. *New Main Office: Please provide a controls diagram for the TI office portion that can be utilized for controls subcontractor pricing.*

Response: A control diagram is being provided. **See attached detail E/M5.02.**

2. *New Main Office: Please clarify where the low voltage pathway(s) between the first and second floors exist.*

Response: Per the archive drawings there are existing pathways.

3. *New Main Office: Please clarify if there are no through-floor penetrations made for fiber optic/low voltage cabling in IDF 228 existing and whether there will be any made in the duration of this project? This would drastically shorten the length of fiber optic cabling pulled between IDF 228 and Server Room 126B.*

4. **Response:** Per archive drawings, pathway between IDF 228 and the existing MDF exist.

5. *New Main Office: The note states that the BMS controls are being updated in another project. Please confirm that the district would like cost estimates to include cost for new controls installed to match the existing system at this time. Also confirm that the updated BMS will be installed at a later time once our scope of work is completed.*

Response: It is the design teams understanding that the remainder of the building is being converted to IVu controls (shell controls project by the owner) now and during construction of the TI. The TI contract will be supplemental to the shell scope of work. The TI controls work and shell controls project is to be done by Automated Electric. The controls scope for the TI includes the following: Each new VAV box is to have a new controller, discharge temp sensor, room sensor, and damper actuator. Exterior boxes have two sets of VAV boxes (one for the cold deck and one for the hot/cold deck). The new programming of these boxes must match the existing air handler operational sequence. New boxes are scheduled on M0.02. All other boxes are being converted to IVu controls thru the shell contract. The shell contract is replacing the controllers, actuators, discharge temp sensor, and room temperature sensor for all remaining existing boxes. TI bid is to include cost of TI controls identified in this response. Cost of shell controls is to the owner direct and is not part of this contract.

6. *New Main Office: Sheets A5.02 and A5.03 show existing cabinets with keynotes (9.09, 9.10) saying “Laminate on countertop and body of (E) cabinet”. We would like to know if this means taking off existing laminate and re-laminate the existing cabinets. If so, what color, is it to the existing, etc., and how much of the cabinets will require this. Please clarify on the specifics.*

Response: Remove all surface laminate of existing casework and re-laminate to match new adjacent casework. Refer to finish schedule on sheet I10.00 for finishes.

Placer County Office of Education

RFP for Lease-Leaseback Construction Services

Office Building Tenant Improvements, Annex Building Alterations, & Site Improvements @ Various Sites

ADDENDUM NO. 4

7. *New Main Office: Sheet E3.06 doesn't show existing j-boxes with circuits. The prints also do not show where panels L2 and L4 are located. Sheets E3.05 and E3.04 show existing j-boxes with circuits, but this info is missing on sheet 3.06. Please clarify on what is required.*

Response: Archive drawings for the west side of the building show j-boxes with circuits (Sheets E3.04 and E3.05). Archive drawings for the east side of the building (Sheet E3.06) did not show j-boxes. Sheet E3.03 shows the locations of Panel L2 and Panel L4.

8. *New Main Office: Note 12.03 on A2.06 for the moss wall now states to refer to finish schedule for information, however, no related note could be located in the recent addendum. Please clarify and provide basis of design.*

Response: Refer to RFI No.30 response in Addendum No.2 for clarification.

9. *New Main Office: A2.01 Demo note D2.54 states "Provide new rubber stair tread and nosing." Please provide a spec for rubber stair tread and nosing*

Response: Refer to attached specification section '09 65 13.23.'

List of Attachments

SECTIONS applicable to:

1400 Stanford Ranch

- Section 09 65 13.23 Resilient Stair Treads and Risers

DRAWINGS applicable to:

1400 Stanford Ranch

- Detail E/M5.02 (VAV Controls Details)

End of Addendum No.4

SECTION 09 65 13.23
Resilient Stair Treads and Risers

PART 1 - GENERAL

1.1 GENERAL PROVISIONS

A. Attention is directed to the CONTRACT AND GENERAL CONDITIONS and all Sections within DIVISION 01 - GENERAL REQUIREMENTS which are hereby made a part of this Section of the Specifications.

1.2 DESCRIPTION OF WORK

A. Work Included: Provide labor, materials, and equipment necessary to complete the work of this Section, including but not limited to the following:

1. Resilient tile flooring for commercial traffic.
2. Resilient stair treads (one-piece nosing, tread, and riser).
3. Resilient stair accessories.
4. Substrate preparation.

B. References (Industry Standards)

1. American Association of Textile Chemists and Colorists (AATCC):
 - a. AATCC 134 - Electrostatic Propensity of Carpets
2. American National Standards Institute (ANSI)
 - a. ANSI ESD S97.2 - Floor Materials and Footwear – Voltage Measurement on a Person
3. ASTM International (ASTM)
 - a. ASTM C518 - Standard Test Method for Steady State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
 - b. ASTM D412 - Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers – Tension
 - c. ASTM D2047 - Standard Test Method for Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine
 - d. ASTM D2240 - Standard Test Method for Rubber Property – Durometer Hardness

- e. ASTM D3389 - Standard Test Method for Coated Fabrics Abrasion Resistance (Rotary Platform, Double Head Abrader)
- f. ASTM D6499 - Standard Test Method for the Immunological Measurement of Antigenic Protein in Natural Rubber and its Products
- g. ASTM E84 - Standard Test Method for Surface Burning Characteristics of Building Materials
- h. ASTM E648 - Standard Test Method for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source
- i. ASTM E662 - Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials
- j. ASTM E1745 - Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs
- k. ASTM E2179 - Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound Transmission Through Concrete Floors
- l. ASTM E2180 - Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials
- m. ASTM F150 - Standard Test Method for Electrical Resistance of Conductive and Static Dissipative Resilient Flooring
- n. ASTM F155 - Method of Test for Temper of Strip and Sheet Metals for Electronic Devices
- o. ASTM F386 - Standard Test Method for Thickness of Resilient Flooring Materials Having Flat Surfaces
- p. ASTM F710 - Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring
- q. ASTM F925 - Standard Test Method for Resistance to Chemicals of Resilient Flooring
- r. ASTM F970 - Standard Test Method for Static Load Limit
- s. ASTM F1344 - Standard Specification for Rubber Floor Tile
- t. ASTM F1482 - Standard Practice for Installation and Preparation of Panel Type Underlayment to Receive Resilient Flooring
- u. ASTM F1514 - Standard Test Method for Measuring Heat Stability of

Resilient Flooring by Color

- v. ASTM F1515 - Standard Test Method for Measuring Light Stability of Resilient Flooring by Color Change
- w. ASTM F1859 - Standard Specification for Rubber Sheet Floor Covering Without Backing
- x. ASTM F1860 - Standard Specification for Rubber Sheet Floor Covering with Backing
- y. ASTM F1861 - Standard Specification for Resilient Wall Base
- z. ASTM F2055 - Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gage Method
 - aa. ASTM F2169 - Standard Specification for Resilient Stair Treads
 - bb. ASTM F2170 - Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes
 - cc. ASTM F2199 - Standard Test Method for Determining Dimensional Stability of Resilient Floor Tile after Exposure to Heat
 - dd. ASTM F2753 - Standard Practice to Evaluate the Effect of Dynamic Rolling Load over Resilient Floor Covering System
 - ee. ASTM F3010 - Standard Practice for Two-Component Resin Based Membrane-Forming Moisture Mitigation Systems for Use Under Resilient Floor Coverings
- ff. ASTM G21 - Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi

4. International Organization for Standardization (ISO):

- a. ISO 10140-3 - Measurement of sound insulation in buildings and of building elements
- b. ISO 26987 - Determination of staining and resistance to chemicals

5. National Fire Protection Association (NFPA):

- a. NFPA 253 - Test Method for Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source
- b. NFPA 258 - Test Method for Specific Density of Smoke Generated by Solid Materials

1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's product data, installation instructions and maintenance guidelines for each material and accessory proposed for use.
- B. Samples: Submit three representative samples of each product specified for verification.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Provide resilient flooring manufactured by a firm with a minimum of 10 years' experience with resilient flooring of type equivalent to those specified.
 1. Manufacturer's Quality Management System must have ISO 9001:2000 approval.
 2. Provide resilient flooring products and accessories from one manufacturer to ensure compatibility.
 3. Manufacturer shall be capable of providing technical training and technical field service representation.
- B. Installer Qualifications: Acceptable to manufacturer of resilient flooring or INSTALL (International Standards & Training Alliance) resilient certified for the requirements of the project with a minimum of 4 years' experience with resilient flooring of type equivalent to those specified.
- C. Sustainable Design Requirements:
 1. ISO 14001 Environmental Management Systems certification.
 2. Construction waste take back program for the purpose of reducing jobsite waste by taking back uninstalled waste flooring. Details of the Nora® program are available at www.Nora.com.
 3. Flooring surfaces that are easily cleaned and do not require coatings, stripping, or use of chemicals that may be hazardous to human health.
 4. Supply all required products that are CA 01350 compliant.
 5. Flooring that contains no polyvinyl chloride or phthalate plasticizers.
 6. Flooring that contains no halogenated polymers.
 7. Flooring that contains no asbestos.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer's recommendations. Protect from damage due to weather, excessive temperatures, and construction operations.
- B. Deliver materials sufficiently in advance of installation to condition materials to the required temperature for 48-hours prior to installation.

1.6 PROJECT CONDITIONS

- A. The installation area must be fully enclosed, weather tight, and climate controlled between 63°F and 75°F and 40% to 60% ambient relative humidity (RH) for at least 48 hours prior, during and 72 hours after installation (do not use gas fueled blowers). Dew point must be avoided. The substrate must be at least 5°F above dew point to be considered acceptable.

1.7 WARRANTY

- A. Provide manufacturer's standard limited warranty for wear, defect, bond, and conductivity.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURER

- A. Basis-of-Design: Nora systems, Inc., www.nora.com; telephone 800-332-NORA.
 - 1. Or approved equal.
- B. Substitutions: Under provisions of Section 01 62 00.

2.2 RESILIENT STAIRTREADS (ONE-PIECE NOSING TREAD AND RISER)

- A. Rubber Stair Treads:
 - 1. Rubber Stair Treads:
 - a. Product Name: Norament® Satura™ stairtreads, Article 469 (6 foot) with visually impaired strips
 - b. ASTM F2169 Standard Specification for Resilient Stair Treads: Type TS, Class 2
 - c. Limited Wear Warranty: 15 years
 - d. Material: Nora vulcanized rubber compound 926 with environmentally

compatible color pigments that are free of toxic heavy metals like lead, cadmium, or mercury

- e. Composition: Homogeneous rubber compound with a random scattered design
- f. Color: 10 standard colors
- g. Surface: Hammered and smooth
- h. Back of Stair Tread: Double-sanded smooth
- i. Material Dimensions ASTM F2169):
 - 1. Length: 78.89 inches (2004mm)
 - 2. Depth: 19.88 inches (505mm)
 - 3. Height: 1.77 inches (45mm)
 - 4. Thickness: 0.20 inches (5.0mm)
- j. Flammability (E648/NFPA 253): ≥ 0.45 watts/sq. cm for Class 1 is required
- k. Smoke Density (ASTM E662/NFPA 258): < 450 is required
- l. Surface Burning (CAN/ULC-S102.2): FSC1 of 70 and SD of 470
- m. Burn Resistance: Resistant to cigarette and solder burns
- n. Slip Resistance (ASTM D2047): Static coefficient of friction ≥ 0.5 is required
- o. Bacteria Resistance (ASTM E2180/ASTM G21): Resistant to bacteria, fungi, and micro-organism activity
- p. Indoor Air Quality: Greenguard Gold Certified for low VOC emissions in compliance with CDPH 01350
- q. Latex Allergies (ASTM D6499): Inhibition ELISA, results are below detection level
- r. Hardness (ASTM D2240): ≥ 70 is required
- s. Static Load (ASTM F970): ≤ 0.005 inches with 250 lbs. is required.
- t. Abrasion Resistance (ASTM D3389): ≤ 0.035 oz. (1.0g) is required
- u. Oil & Grease Resistance (EN/ISO 26987): Yes

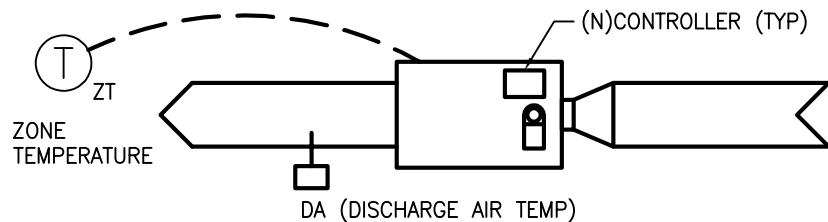
- v. Heat Resistance (ASTM F1514): Avg. $\Delta E \leq 8.0$ is required
- w. Static Generation (AATCC 134): < 1000 Volts at 20% RH
- x. Cleaning: Cleaned and maintained effectively using water, Nora pads and a suitable cleaning machine, without the use of any factory and/or field-applied coatings. Also, without using any chemicals that may be hazardous or containing any teratogenic, mutagenic or any other ingredients known to be carcinogenic. Refer to Nora Maintenance Guidelines for product specific details.
- y. Shine: Higher shine achieved by buffing without any artificial topical applied coatings.
- z. Stain Removal: Samples of the product must be provided for stain removal testing by the owner. Sample size must be 24 inches by 24 inches, pre-cleaned by manufacture per published recommendations. Samples must have no coatings, sealers, floor finish or other manually or mechanically applied finish on the surface of the product. Stain testing must consist of application of common healthcare related disinfectants and chemicals to include, but not limited to, Betadine, Methylene Blue, Silver Nitrate, and alcohol-based hand sanitizer. Duration of test period must be no less than one week. Removal of chemicals must be in accordance with manufacturers published cleaning and maintenance recommendations.
- aa. Substrate Preparation: Per ASTM F710 and the Nora Installation Instructions

PART 3 - EXECUTION

3.1 GENERAL CONTRACTOR RESPONSIBILITIES

- A. Supply a safe, climate-controlled building and subfloor as detailed in the Nora Installation Instructions (available at www.Nora.com)
- B. A subfloor that meets the requirements of ASTM F710 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring is required, or as detailed in the Nora Installation Instructions or Nora nTx Installation Instructions as appropriate.
- C. A secure storage area that is fully enclosed, weather tight, and climate controlled between 63°F and 75°F and 40% to 60% ambient relative humidity (RH) for at least 48-hours prior and during the installation, so the flooring contractor can acclimate all materials.
- D. An installation area that is fully enclosed, weather tight, and climate controlled

between 63°F and 75° and 40% to 60% ambient relative humidity (RH) for at least 48-hours prior, during, and 72-hours after installation (do not use gas fueled blowers). If this is not possible, contact the Nora Technical Department.

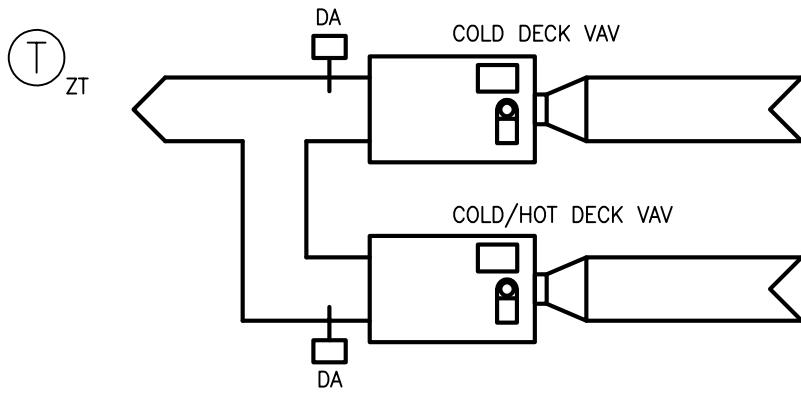

- E. Areas with direct prolonged exposure to sunlight should be protected with the use of Low E glass doors, windows or facades that reduce the UV transmissions to less than 1%.
- F. Areas of the flooring subjected to direct sunlight, for example through doors or windows, must be covered using blind, curtains, cardboard, or similar materials for 24-hours before, during, and for a period of 72-hours after the installation to allow Nora "wet" adhesives to cure. Do not allow traffic when using wet set adhesives for a minimum of 12-hours and prohibit rolling loads for 72-hours. When using Nora® nTxTM or Nora dryfixTM, the flooring can be trafficked immediately with no restrictions. All flooring must be protected from damage during construction operations using Masonite, plywood, or a similar product. Before laying the panels, the flooring surface must be free of all debris. Lay panels so that they are edge to edge and tape the joints to prevent movement and debris entrapment. Inspect the flooring before covering and after removal for final acceptance.
- G. Conduct post-installation cleaning after 72-hours for wet set adhesives. Conduct post-installation cleaning immediately for installations using Nora dryfix or Nora nTx. Refer to the appropriate Nora Maintenance Guidelines for product specific details.

3.2 FLOORING CONTRACTOR RESPONSIBILITES

- A. Provide trained installers that have at least one of the following:
 - 1. Approved by specified manufacturer (Nora systems, Inc.) or INSTALL (International Standards & Training Alliance) certified for the requirements of the project.
 - 2. It is recommended to have a minimum of one installer per working party with the ability to provide proof of current credentials at request.
 - 3. An effective installation manager to manage the project, installers, and ensure that all the required procedures are followed as detailed in the Nora Installation Instructions (available at www.Nora.com).
- B. Follow all requirements in the appropriate Nora Installation Instructions or Nora nTx Installation Instructions.

END OF SECTION

NOTE: EXISTING BOXES THAT ARE REMAINING AND BEING REUSED ARE HAVING CONTROLLER, STATS, ACUATORS AND DA-T REPLACED UNDER A SEPARATE SHELL CONTRACT. WHERE THIS OCCURS, RELOCATE THE ROOM SENSOR TO LOCATION SHOWN ON PLANS. NEW BOXES ARE TO HAVE NEW CONTROLS AS PART OF THE T.I. CONTRACT.



COLD DECK BOX SEQUENCE

MODULATE COLD DECK DAMPER FROM MIN. AIRFLOW CFM TO MAXIMUM AIRFLOW CFM TO MAINTAIN ROOM SETPOINT.

(NOTE: THE COLD DECK RESETS SUPPLY AIR TEMPERATURE FROM 45°F TO 60°F)

COLD DECK VAV - INTERIOR VAV BOX

EXTERIOR VAV BOX

COLD/HOT DECK VAV BOXES - SEQUENCE

COLD DECK BOX MODULATES AS DESCRIBED ABOVE.

(NOTE: COLD DECK GETS VENTILATION AIR (FRESH AIR). HOT/COLD DECK DOES NOT HAVE VENTILATION AIR.)

COLD/HOT DECK:
DURING WARM AMBIENT TEMPERATURES, THE DECK CONVERTS TO COLD DECK w/45°F SUPPLY AIR (RESETTABLE). WHEN AMBIENT TEMPERATURES BECOME COOLER (AS DETERMINED THRU THE AC UNIT LOGIC), THE DECK IS CONVERTED TO NEUTRAL AIR (NO HEATING OR COOLING - JUST RECIRCULATION OF PLENUM AIR. UPON FURTHER ZONE REQUEST FOR HEATING, THE DECK IS CONVERTED TO HEATING DECK. HOT DECK IS ±115°F (ADJUSTABLE).

VAV CONTROL DETAILS

NO SCALE