Placer County Office of Education

BUILDING A
1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT
1229 PLEASANT GROVE BLVD, ROSEVILLE, CA 95678

GENERAL NOTES

1. THIS DRAWING INFORMATION IS FOR CONTRACTOR USE ONLY AND IS NOT FOR CONSTRUCTION.
2. ALL CONTRACTORS, INCLUDING THE GENERAL CONSTRUCTION CONTRACTOR, SHALL COMPARE THEIR MATERIALS, SERVICES, AND OPERATIONS TO THE DESIGN INFORMATION AND SPECIFICATIONS INCLUDED IN THIS DRAWING INFORMATION.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING AND MAINTAINING TEMPORARY FENCING AND圍

ABBREVIATIONS

AC AIR CONDITIONING
ACOUS ACOUSTICAL
OSHPD
A/C AIR CONDITIONING
ALT ALTERNATE
CEILING CLO
SFPD SEE FIRE PROTECTION DRAWINGS
SMD SEE MECHANICAL DRAWINGS
ID2.00 OVERALL FLOORING FINISH PLAN
W/ WITH
2014 NATIONAL ELECTRICAL CODE (NEC) WITH 2016 CALIFORNIA AMENDMENTS)
INTERIORS
SFPD SEE FIRE PROTECTION DRAWINGS
SMD SEE MECHANICAL DRAWINGS
SFD SEE SECURITY DRAWINGS
STANDARD
CCF CEILING CLO
CUST CUSTODIAN
DBL DOUBLE
DEPT DEPARTMENT
CT CERAMIC TILE
ELV ELECTRICAL
FAX (866) 284-1466
FA FIRE ALARM
FF2.01 OVERALL FURNITURE PLAN
TOP TOP OF WALL
4. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING AND MAINTAINING TEMPORARY FENCING AND圍

APPLICATION CODES

1. TYPE OF WALL OR CONSTRUCTION
2. WALL OR CONSTRUCTION
3. WALL OR CONSTRUCTION
4. WALL OR CONSTRUCTION
5. WALL OR CONSTRUCTION
6. WALL OR CONSTRUCTION
7. WALL OR CONSTRUCTION
8. WALL OR CONSTRUCTION
9. WALL OR CONSTRUCTION
10. WALL OR CONSTRUCTION

SCOPE OF WORK

DEFERRED APPROVALS

EXISTING CONDITIONS

LOCATION MAP

VICTA DESC MAP

1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT

PROJECT LOCATION

BID SET
NOT FOR CONSTRUCTION
Table 2.1: VOC Content Limits for Architectural Primers

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.2: VOC Content Limits for Architectural Coatings

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.3: VOC Content Limits for Architectural sealants

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.4: VOC Content Limits for Architectural Adhesives

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.5: VOC Content Limits for Architectural Sausages

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.6: VOC Content Limits for Architectural Paints

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.7: VOC Content Limits for Architectural Aerogels

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.8: VOC Content Limits for Architectural Glues

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.9: VOC Content Limits for Architectural Abrasives

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.10: VOC Content Limits for Architectural Abrasives

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.11: VOC Content Limits for Architectural Abrasives

<table>
<thead>
<tr>
<th>VOC Group</th>
<th>Current VOC Limit</th>
<th>VOC Content Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>MEK</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Ethanol</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>Xylenes</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>
GENERAL NOTES

1. Contractor to organize and store construction activities out of emergency vehicle access at all times.

2. Contractor to coordinate temporary fencing at all sites with District.

3. Contractor to survey all areas of work to locate existing utilities & protect accordingly.

4. Legend symbols are for reference only and do not represent exact shape or dimension of existing or new conditions.

5. Contractor to verify all barriers have been removed and compliance with CBC 11B.

ACCESSIBLE PATH OF TRAVEL

Accessible path of travel or sidewalks on plan shall be continuous and not be interrupted by any change in level exceeding 1/2". The path shall be a level surface with a cross slope not exceeding 2% and a running slope not exceeding 5% unless otherwise indicated. Accessible path of travel shall be maintained free of overhanging obstructions to 80" minimum and protruding objects greater than 4" projection from wall above 27" and less than 80". Architect shall verify that there are no barriers in the path of travel.

SITE KEYNOTES

105 Replace concrete walk at accessible path of travel where cross slopes exceed 1:48 (2.08%) and running slopes exceeding 1:20 (5.0%) - 100 lineal ft - 4' wide. 100% construction documents.

LEGEND

CONCRETE WALK APPLICATION
CONCRETE WALK REPLACED
CONCRETE SURFACE APPLICATION
CONCRETE MILLFILED
WATER AREA
GENERAL NOTES

1. Contractor to organize and store construction activities out of emergency vehicle access at all times.

2. Contractor to coordinate temporary fencing at all sites with District.

3. Contractor to survey all areas of work to locate existing utilities & protect accordingly.

4. Legend symbols are for reference only and do not represent exact shape or dimension of existing or new conditions.

5. Contractor to verify all barriers have been removed and compliance with CBC 11B.

ACCESSIBLE PATH OF TRAVEL

Accessible path of travel as indicated on plans is a barrier-free access route without any abrupt level changes exceeding 1/2" if beveled at 1:2 maximum slope or vertical level changes not exceeding 1/4" maximum and at least 48" in width. Surface is stable, firm and slip resistant. Cross slope does not exceed 2% and slope in the direction of travel is less than 5% unless otherwise indicated. Accessible path of travel shall be maintained free of overhanging obstructions to 80" high and 48" from the ground surface. Accessible path of travel shall be kept clear of more than 4" projection from wall above 27" and less than 80". Architect shall verify that there are no barriers in the path of travel.

SITE KEYNOTES

1. Install wheel stops at all accessible parking stalls.

2. Install curb ramp at accessible parking, see detail 26/A1.04.

3. Replace concrete walk at accessible path of travel where 100% construction cross slopes exceed 1:48 (2.08%) and running slopes exceeding 1:20 (5.0%) - 100 lineal ft - 4' wide.

4. Install concrete pad, see details 18/A1.04 and 23/A1.04.

5. Install truncated domes at accessible parking curb ramp. See issue date: 09/06/2019 by detail 30/A1.04.

6. Install accessible parking signage at all accessible stalls see details 7/A1.04 and 8/A1.04.

7. Install tow away sign to be placed at the vehicle entrance and visible at all accessible parking locations. See detail 2/A1.04.

15 MIN. LOADING & UNLOADING ZONE ONLY

This document is the property of the Owner and is not to be used without his written permission.

Architect/Engineer Of Record:__________________________

Hydrus, Inc.

Placer County Office of Education
1229 Pleasant Grove Blvd
Roseville, CA 95678

1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT

Placer County Office of Education

Trac-Build, Inc.

1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT

Placer County Office of Education

Trac-Build, Inc.

1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT

PLACER COUNTY OFFICE OF EDUCATION

HYDRUS, INC.

PLACER COUNTY OFFICE OF EDUCATION

HYDRUS, INC.

PLACER COUNTY OFFICE OF EDUCATION

HYDRUS, INC.

PLACER COUNTY OFFICE OF EDUCATION

HYDRUS, INC.
GENERAL NOTES

1. ALL NOTES ARE TYPICAL UNLESS OTHERWISE NOTED.

2. SEE MECHANICAL AND STRUCTURAL DRAWINGS FOR ADDITIONAL INFORMATION.

3. PAINT GALVANIZED CONDENSATE LINES.

4. CONTRACTOR TO PROTECT EXISTING ROOF AREA NOT AFFECTED BY SCOPE.

KEYNOTES

- EXISTING ROOF ACCESS
- ROOF DRAIN AND OVERFLOW
- ROOF STRUCTURE
- EXISTING ROOF SLOPE
- EXISTING ROOF DRAIN
- EXISTING FLAT ROOF
- EXISTING SLOPED ROOF
- EXISTING ROOF ACCESS

- INSTALL GUTTERS @ NORTH, EAST, AND WEST SIDE OF BUILDING
- INSTALL DOWNSPOUT
- REPLACE EXISTING GUTTERS @ SOUTH SIDE OF BUILDING
- REPLACE EXISTING ROOF DRAIN
- REPLACE ROT DAMAGED FASCIA ON WEST SIDE
- VENT, SPD

- TYP

LEGEN

- EXISTING ROOF ACCESS
- ROOF DRAIN AND OVERFLOW
- ROOF STRUCTURE
- EXISTING ROOF SLOPE
- EXISTING ROOF DRAIN
- EXISTING FLAT ROOF
- EXISTING SLOPED ROOF
- EXISTING ROOF ACCESS

- INSTALL GUTTERS @ NORTH, EAST, AND WEST SIDE OF BUILDING
- INSTALL DOWNSPOUT
- REPLACE EXISTING GUTTERS @ SOUTH SIDE OF BUILDING
- REPLACE EXISTING ROOF DRAIN
- REPLACE ROT DAMAGED FASCIA ON WEST SIDE
- VENT, SPD

- TYP
This document is the property of the Owner and is not to be used without his written permission.

KEYNOTES

1. **EXISTING RAILING TO REMAIN**
2. **EXISTING DOOR TO REMAIN**
3. **REMOVE ONLY EXTERIOR DOOR HARDWARE. DOORS TO BECOME EXIT ONLY**
4. **NEW STOREFRONT SYSTEM FOR MAIN BUILDING ENTRY TO MATCH EXISTING SYSTEM**
5. **NEW STOREFRONT SYSTEM FOR EGRESS EXITING TO MATCH EXISTING SYSTEM.**
6. **REPLACE EXISTING GUTTERS @ SOUTH SIDE OF BUILDING, SEE DETAIL 1/A1.05**
7. **INSTALL GUTTERS @ NORTH, EAST, AND WEST SIDE OF BUILD, SEE DETAIL 1/A1.05**

HY Architects Project number:

Facility: Placer County Office of Education

Placer County Office of Education

1229 PLEASANT GROVE BLVD. ROSEVILLE, CA 95678

Project: 1229 PLEASANT GROVE BLVD - TENANT IMPROVEMENT

Sheet Title: EXTERIOR ELEVATIONS

Sheet Scale: 1/4" = 1'-0"

Drawn By: AU

Checked By: Checker

Issue Date: 08/16/2019

Revit Version: 2019 Sheet 17 of 44
GENERAL INTERIOR ELEVATION NOTES

1. REFER TO ID1.00 FOR FINISH SYMBOL LEGEND, GENERAL NOTES, & SCHEDULE.

2. REFER TO FF SERIES SHEETS FOR FURNITURE & EQUIPMENT LAYOUTS.

4. REFER TO SG SERIES SHEETS FOR SIGNAGE CODE DESCRIPTIONS &

P5 SPECIFICATIONS.

@ WALL INSET P4

801 LOWER CASEWORK, SEE DETAIL 1/A9.05

802 UPPER CASEWORK, SEE DETAIL 1/A9.05

1001 REFRIGERATOR, O.F.C.

1105 4" RUBBER BASE TO BE INSTALLED, SEE SCHEDULE ON ID1.00 & DETAIL

5/A9.03

Revisions

1108 WALL PROTECTION, SEE FINISH SCHEDULE, INTERIOR ELEVATIONS &

DETAIL 10/A9.03

A9.03

1107 FULL HEIGHT CORNER GUARD. SEE FINISH SCHEDULE ON SHEET ID1.00 &

DETAIL 9/A9.03

No. Revisions By Date Appr.

WAITING 2

HALLWAY 145

BREAK ROOM 111

MAIL/COPY 131

QUIET ROOM 117

ISSUE DATE: 09/06/2019

PROJECT NUMBER: 5293

HY Architects Project number:

Facility: Placer County Office of Education

Project: 1229 PLEASANT GROVE BLVD- TENANT IMPROVEMENT

Sheet Title: INTERIOR ELEVATIONS

Sheet Scale: 1/4" = 1'-0"
1. GENERAL REQUIREMENTS

3 TURNS IN 3" TYP @ EACH END

8" MIN. STL ANGLE PER MANUF. REQ'S 4 TURNS IN 1 - 1/2" TYP @ EACH END

a) Shall comply with ASTM C635-07 and Section 5.1 of ASTM E580-10a.

b) The ceiling grid system must be rated heavy duty as defined by ASTM C635-08.

HEADBOX AND SHADE OR EQ. TO LOOP SPLICE tension per ASTM E580 Section 5.1.2.

8" MIN. • Three (3) turns of the wire within 3" is assumed to develop no more than 50 percent of wire allowable load.

LOAD REQD. FOR EA. 12 GA. HANGER WIRE TEST HANGER WIRE IS 200 LBS. IN LOAD REQD. FOR EA.

HEADBOX AND TENSION HANGER WIRE IS 200 LBS. IN a) Shall comply with ASTM C636 and Section 5.2 of ASTM E580. SUSPENDED ... within eight (8) inches of the support or within one-fourth (1/4) of the length of the end tee, whichever is least,

16 HANGAR WIRE SPLICE

• The strut shall not be more than one (horizontal) in six (vertical) out of plumb.

ATTACH SHADE BOX TO ANGLE W/ (2) #10 SDST

DSC MODEL. TYP.

2.6.1 Light Fixtures:

a) Surface-mounted light fixtures shall be attached to the main runner with at least two positive clamping devices on each fixture. The clamping device shall completely surround the

ACCESS PANELS:

WITH FULL THREAD

ACCESS TO THE SPACE BETWEEN THE CEILING AND THE FLOOR OR ROOF

EMBEDMENT (1 - 1/2" MIN.) ABOVE SHALL NOT BE ALLOWED. SMALL ACCESS PANELS FOR THE

b) Light fixtures weighing less than or equal to 10 lb. shall have a minimum of one (1) #12 gage slack safety wire connected from the fixture housing to the structure above.

c) Light fixtures weighing greater than 10 lb. but less than or equal to 56 lbs. may be supported directly on the ceiling runners, but they shall have a minimum of two (2) #12 gage slack

SUCH PANELS SHALL ALSO HAVE A PERMANENT WARNING LABEL AS CLG. PANEL NOTE:

All light fixtures greater than two by four feet weighing less than 56 lbs. shall have a #12 gage slack safety wire at ... CLG. 5/8" GYP. BD., W.O. SPLAY WIRES PARALLEL TO GA. FOR GYP. BD. CLG.) FOR SURFACE MOUNTED WARNING: WITH 4 TIGHT TURNS

Exception:

CANNOT BE PERPENDICULAR terminal or service to the structure above.

2#10 X 3" WD. SCREW AT EA. 9A

BRACING WIRE
FINISH SCHEDULE

<table>
<thead>
<tr>
<th>CODE</th>
<th>PRODUCT DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>MODEL INFORMATION</th>
<th>COLOR & FINISH INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL FINISH NOTES

1. REFER TO ID1.00, INTERIOR ELEVATIONS, AND SPECIFICATIONS FOR FINISH.
2. CODE PRODUCT DESCRIPTION MANUFACTURER MODEL INFORMATION COLOR & FINISH INFORMATION AND ADDITIONAL INFORMATION ON SUBSTRATE PREP WORK & INSTALLATION.

3. INTERIOR WALL AND CEILING FINISHES SHALL COMPLY WITH 2016 CBC SECTION 803, BE CLASSIFIED IN ACCORDANCE WITH ASTM E84 OR UL 723, TESTED IN CG1 CORNER GUARD, 1.5" X 1.5" (90°), METAL IN-PRO. CORP, INC. SERIES NO.: 181124C-304 FINISH: 16 GA. STAINLESS STEEL #4/ 304 ACCORDANCE WITH NFPA 286 AND SHALL BE CLASS C OR BETTER; FLAME SIZE: 1-1/2" X 1-1/2" X FULL HEIGHT (SEE INTERIOR INSTALLATION: CEMENT GLUE-ON.

4. INTERIOR FLOOR FINISH AND COVERINGS SHALL COMPLY WITH 2016 CBC SECTION 804, BE TESTED IN ACCORDANCE WITH NFPA 253, COMPLY WITH ASTM TP1 TOILET PARTITION WILSONART HIGH PRESSURE LAMINATE W/ COLOR NO.: 1500 COLOR NAME: GREY AEON SCRATCH RESISTANCE FINISH NO.: 60

5. GENERAL CONTRACTOR & SUB-CONTRACTORS TO VERIFY LEAD TIMES ON ALL REQUIRE 6-12 WEEKS LEAD TIME AND SUBSTITUTIONS ARE NOT ALLOWED, UNLESS

6. GENERAL CONTRACTOR & SUB-CONTRACTORS SHALL TEST THE FLOORING SUBSTRATE IS LEVEL, SMOOTH, FREE OF DUST & CONSTRUCTION DEBRIS & READY TO RECEIVE NEW FLOORING MATERIAL.

7. OFFICES & CONFERENCE ROOMS SHALL RECEIVE ACT2.

8. ALL CASEWORK SHALL RECEIVE PL1 & SS1, UNLESS ON INTERIOR ELEVATIONS.

9. INTERIOR ELEVATIONS, FINISH SCHEDULE & FLOORING FINISH PLANS. @ ALL SINK LOCATIONS PROVIDE COLD WELD @ TOP-SET WALL BASE TRANSITION TO FLOORING.

10. FLOAT & SKIM WALLS TO BE LEVEL & SMOOTH TO RECEIVE NEW WALL BASE.

11. FLOORING & WALL BASE SHALL CONTINUE UNDER ADA COMPLIANT SLOPED & INTEGRAL TOE-KICK SINK CABINETS.

12. WHERE OCCURS, WALLS SHALL RECEIVE WALL PROTECTION WP1. SEE DETAIL COLOR NAME: GRAY

13. ALL CASEWORK SHALL RECEIVE PL1 & SS1, UNLESS ON INTERIOR ELEVATIONS.

14. ALL INTERIORS OF ENCLOSED CABINETS INCLUDING SHELVING SHALL RECEIVE TS1 TRANSITION STRIP, CARPET TO RESILIENT MANNINGTON COMMERCIAL SERIES NAME.: FUSION 2.5 COLOR NAME: SILVER GREY METALLIC ALL INTERIORS OF OPEN CABINETS INCLUDING SHELVING SHALL MATCH THE EXTERIOR LAMINATE FINISH, UNLESS.

15. TS2 TRANSITION STRIP, REDUCER TO CONCRETE JOHNSONITE MODEL NO.: SSR-XX-B COLOR NO.: TBD FINISHES.

16. ALL CARPET TO BE ASHLAR INSTALLED UNLESS

17. ALL INTERIORS OF ENCLOSED CABINETS INCLUDING SHELVING SHALL RECEIVE TS1 TRANSITION STRIP, CARPET TO RESILIENT MANNINGTON COMMERCIAL SERIES NAME.: FUSION 2.5 COLOR NAME: SILVER GREY METALLIC ALL INTERIORS OF OPEN CABINETS INCLUDING SHELVING SHALL MATCH THE EXTERIOR LAMINATE FINISH, UNLESS.

18. WHERE OCCURS, WALLS SHALL RECEIVE WALL PROTECTION WP1. SEE DETAIL COLOR NAME: GRAY

19. ALL CASEWORK SHALL RECEIVE PL1 & SS1, UNLESS ON INTERIOR ELEVATIONS.

20. ALL INTERIORS OF ENCLOSED CABINETS INCLUDING SHELVING SHALL RECEIVE TS1 TRANSITION STRIP, CARPET TO RESILIENT MANNINGTON COMMERCIAL SERIES NAME.: FUSION 2.5 COLOR NAME: SILVER GREY METALLIC ALL INTERIORS OF OPEN CABINETS INCLUDING SHELVING SHALL MATCH THE EXTERIOR LAMINATE FINISH, UNLESS.

FINISH SYMBOL LEGEND

- INDICATES PAINT FINISH
- INDICATES BASE FINISH
- INDICATES FLOOR FINISH
- INDICATES CEMENT GLUE-ON INSTALLATION
- INDICATES QUARTER TURN FLOORING INSTALLATION
- INDICATES MELAMINE FINISH, UNLESS
- INDICATES CASEWORK & CEILING GRID'S PERIMETER WALL TRIM.
- INDICATES CASEWORK & CEILING GRID'S PERIMETER WALL TRIM.
- INDICATES CASEWORK & CEILING GRID'S PERIMETER WALL TRIM.
General Signage Notes

1. Coordinate locations of wall mounted accessories, equipment, furniture, signage, and their associated backing with power/data/telephone outlets prior to installation. Remove & relocate all such items if they conflict with proposed locations.

2. Provide additional blank sign for opposite side of glazing where only sign occurs.

3. Refer to sheet SG9.01 for all signage specific mounting and fabrication details.

4. Refer to A1.01 for exterior signage locations.

5. Refer to SG2.01 for 3D signage locations, 1/4" thick placer county vertically brushed aluminum 72" x 3" office of education.

6. Refer to office of education for all signage effects and marking.

7. Provide additional blank sign for opposite side of glazing where only sign occurs.

8. Refer to A1.01 for exterior signage locations.

9. Refer to office of education for all signage effects and marking.

10. Refer to SG2.01 for 3D signage locations, 1/4" thick placer county vertically brushed aluminum 72" x 3" office of education.

Signage Schedule - Master

<table>
<thead>
<tr>
<th>Location</th>
<th>Sign Type</th>
<th>Item Description</th>
<th>W x H</th>
<th>Signage Color</th>
<th>Plan Color</th>
<th>Construction Method</th>
<th>Installation Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

09/06/2019

Architect/Engineer Of Record:___

Architect/ Engineer

Architect/ Engine
MECHANICAL NOTES

1. All work areas shall be finished with a minimum of 24° on all exposed surfaces and shall not have any sharp edges. All hydraulic, pneumatic, or other pressurized systems shall be tested to their maximum operating capacity prior to being placed in service. All plumbing systems shall be tested for leaks before they are placed into service.

2. The contractor shall ensure that all mechanical equipment and systems are installed in accordance with the latest edition of the National Fire Protection Association (NFPA) and the applicable building codes.

3. All mechanical equipment shall be installed in such a manner as to provide for easy accessibility and maintenance of all components.

4. All mechanical systems shall be operated in accordance with the manufacturer's instructions and the latest edition of the National Fire Protection Association (NFPA).

5. All mechanical systems shall be tested and balanced in accordance with the latest edition of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) and the applicable building codes.

6. All mechanical systems shall be insulated in accordance with the latest edition of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) and the applicable building codes.

7. All mechanical systems shall be tested for leakage before they are placed into service.

8. All mechanical systems shall be tested for performance before they are placed into service.

9. All mechanical systems shall be tested for noise before they are placed into service.

10. All mechanical systems shall be tested for vibration before they are placed into service.

11. All mechanical systems shall be tested for energy efficiency before they are placed into service.

12. All mechanical systems shall be tested for safety before they are placed into service.

13. All mechanical systems shall be tested for durability before they are placed into service.

14. All mechanical systems shall be tested for reliability before they are placed into service.

15. All mechanical systems shall be tested for maintainability before they are placed into service.

16. All mechanical systems shall be tested for operability before they are placed into service.

17. All mechanical systems shall be tested for controllability before they are placed into service.

18. All mechanical systems shall be tested for maintainability before they are placed into service.

19. All mechanical systems shall be tested for operability before they are placed into service.

20. All mechanical systems shall be tested for controllability before they are placed into service.

21. All mechanical systems shall be tested for maintainability before they are placed into service.

22. All mechanical systems shall be tested for operability before they are placed into service.

23. All mechanical systems shall be tested for controllability before they are placed into service.

24. All mechanical systems shall be tested for maintainability before they are placed into service.

25. All mechanical systems shall be tested for operability before they are placed into service.

26. All mechanical systems shall be tested for controllability before they are placed into service.

27. All mechanical systems shall be tested for maintainability before they are placed into service.

28. All mechanical systems shall be tested for operability before they are placed into service.

29. All mechanical systems shall be tested for controllability before they are placed into service.

30. All mechanical systems shall be tested for maintainability before they are placed into service.

31. All mechanical systems shall be tested for operability before they are placed into service.

32. All mechanical systems shall be tested for controllability before they are placed into service.

33. All mechanical systems shall be tested for maintainability before they are placed into service.

34. All mechanical systems shall be tested for operability before they are placed into service.

35. All mechanical systems shall be tested for controllability before they are placed into service.

36. All mechanical systems shall be tested for maintainability before they are placed into service.

37. All mechanical systems shall be tested for operability before they are placed into service.

38. All mechanical systems shall be tested for controllability before they are placed into service.

39. All mechanical systems shall be tested for maintainability before they are placed into service.

40. All mechanical systems shall be tested for operability before they are placed into service.

41. All mechanical systems shall be tested for controllability before they are placed into service.

42. All mechanical systems shall be tested for maintainability before they are placed into service.

43. All mechanical systems shall be tested for operability before they are placed into service.

44. All mechanical systems shall be tested for controllability before they are placed into service.

45. All mechanical systems shall be tested for maintainability before they are placed into service.

46. All mechanical systems shall be tested for operability before they are placed into service.

47. All mechanical systems shall be tested for controllability before they are placed into service.

48. All mechanical systems shall be tested for maintainability before they are placed into service.

49. All mechanical systems shall be tested for operability before they are placed into service.

50. All mechanical systems shall be tested for controllability before they are placed into service.

51. All mechanical systems shall be tested for maintainability before they are placed into service.

52. All mechanical systems shall be tested for operability before they are placed into service.

53. All mechanical systems shall be tested for controllability before they are placed into service.

54. All mechanical systems shall be tested for maintainability before they are placed into service.

55. All mechanical systems shall be tested for operability before they are placed into service.

56. All mechanical systems shall be tested for controllability before they are placed into service.

57. All mechanical systems shall be tested for maintainability before they are placed into service.

58. All mechanical systems shall be tested for operability before they are placed into service.

59. All mechanical systems shall be tested for controllability before they are placed into service.

60. All mechanical systems shall be tested for maintainability before they are placed into service.

61. All mechanical systems shall be tested for operability before they are placed into service.

62. All mechanical systems shall be tested for controllability before they are placed into service.

63. All mechanical systems shall be tested for maintainability before they are placed into service.

64. All mechanical systems shall be tested for operability before they are placed into service.

65. All mechanical systems shall be tested for controllability before they are placed into service.

66. All mechanical systems shall be tested for maintainability before they are placed into service.

67. All mechanical systems shall be tested for operability before they are placed into service.

68. All mechanical systems shall be tested for controllability before they are placed into service.

69. All mechanical systems shall be tested for maintainability before they are placed into service.

70. All mechanical systems shall be tested for operability before they are placed into service.

71. All mechanical systems shall be tested for controllability before they are placed into service.

72. All mechanical systems shall be tested for maintainability before they are placed into service.

73. All mechanical systems shall be tested for operability before they are placed into service.

74. All mechanical systems shall be tested for controllability before they are placed into service.

75. All mechanical systems shall be tested for maintainability before they are placed into service.

76. All mechanical systems shall be tested for operability before they are placed into service.

77. All mechanical systems shall be tested for controllability before they are placed into service.

78. All mechanical systems shall be tested for maintainability before they are placed into service.

79. All mechanical systems shall be tested for operability before they are placed into service.

80. All mechanical systems shall be tested for controllability before they are placed into service.

81. All mechanical systems shall be tested for maintainability before they are placed into service.

82. All mechanical systems shall be tested for operability before they are placed into service.

83. All mechanical systems shall be tested for controllability before they are placed into service.

84. All mechanical systems shall be tested for maintainability before they are placed into service.

85. All mechanical systems shall be tested for operability before they are placed into service.

86. All mechanical systems shall be tested for controllability before they are placed into service.

87. All mechanical systems shall be tested for maintainability before they are placed into service.

88. All mechanical systems shall be tested for operability before they are placed into service.

89. All mechanical systems shall be tested for controllability before they are placed into service.

90. All mechanical systems shall be tested for maintainability before they are placed into service.

91. All mechanical systems shall be tested for operability before they are placed into service.

92. All mechanical systems shall be tested for controllability before they are placed into service.

93. All mechanical systems shall be tested for maintainability before they are placed into service.

94. All mechanical systems shall be tested for operability before they are placed into service.

95. All mechanical systems shall be tested for controllability before they are placed into service.

96. All mechanical systems shall be tested for maintainability before they are placed into service.

97. All mechanical systems shall be tested for operability before they are placed into service.

98. All mechanical systems shall be tested for controllability before they are placed into service.

99. All mechanical systems shall be tested for maintainability before they are placed into service.

100. All mechanical systems shall be tested for operability before they are placed into service.

101. All mechanical systems shall be tested for controllability before they are placed into service.

102. All mechanical systems shall be tested for maintainability before they are placed into service.

103. All mechanical systems shall be tested for operability before they are placed into service.

104. All mechanical systems shall be tested for controllability before they are placed into service.

105. All mechanical systems shall be tested for maintainability before they are placed into service.

106. All mechanical systems shall be tested for operability before they are placed into service.

107. All mechanical systems shall be tested for controllability before they are placed into service.

108. All mechanical systems shall be tested for maintainability before they are placed into service.

109. All mechanical systems shall be tested for operability before they are placed into service.

110. All mechanical systems shall be tested for controllability before they are placed into service.

111. All mechanical systems shall be tested for maintainability before they are placed into service.

112. All mechanical systems shall be tested for operability before they are placed into service.

113. All mechanical systems shall be tested for controllability before they are placed into service.

114. All mechanical systems shall be tested for maintainability before they are placed into service.

115. All mechanical systems shall be tested for operability before they are placed into service.

116. All mechanical systems shall be tested for controllability before they are placed into service.

117. All mechanical systems shall be tested for maintainability before they are placed into service.

118. All mechanical systems shall be tested for operability before they are placed into service.

119. All mechanical systems shall be tested for controllability before they are placed into service.

120. All mechanical systems shall be tested for maintainability before they are placed into service.
MATERIAL LEGEND

CONTROL SYSTEM COMPLETE SHALL BE THE RESPONSIBILITY OF THE TEMPERATURE CONTROL CONTRACTOR (TCC). WIRING BY TCC.

TEMPERATURE CONTROL NOTES
1. LABEL ALL THERMOSTATS, CONTROLLERS, ETC. WITH PERMANENT MARKERS AND INCORPORATE INTOスクール BUILDING PLAN.
2. INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
3. INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
4. DO NOT INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
5. INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
6. INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
7. INSTALL SENSORS INTO INTERIOR WALLS WHERE ANY SENSOR IS SCHEDULED TO BE INSTALLED AND PAINT OVER WITH APPLICABLE SENSORS OR SENSORS MADE TO BE STICKIES IN MATERIALS.
BC CONTROLLER DETAILS

WALL MOUNT UNIT MOUNTING

ACCEPTABLE BrACE CONFIGURATION

Duct Fitting

ROOFTOP SUPPORT BLOCKING DETAIL

CONCEALED DUCT SUPPORT DETAILS

WOOD STRUCTURE

HEAT PUMP & BC CONTROLLER SUPPORT DETAILS

PACKAGED AC UNIT MOUNTING DETAIL

DUCTLESS SPLIT SYSTEM DETAILS - WOOD DECK

HPO OUTDOOR UNIT MOUNTING DETAIL

1/4" = 1'-0"
1. ALL EXPOSED GAS PIPING TO BE CLEANED, PRIMED, AND PAINTED (YELLOW).

NOTES:

1. ALL EXPOSED GAS PIPING TO BE CLEANED, PRIMED, AND PAINTED (YELLOW).

NOTES:

"Ø x 3" LAG BOLTS

1

NOTES:

TO WALL BLOCKING WITH STRAP WATER HEATER MODEL DET-12 OR EQUAL

GAP AT DISCHARGE

TO BE USED AT ALL UNITS WITH SPRING CURBS (UNO) WHERE OCCURS PRESSURE AND TEMPERATURE (SUPERSTRUT MODEL AB-227 / OR EQUAL) WHERE OCCURS PRESSURE AND TEMPERATURE (SUPERSTRUT MODEL AB-227)

3/8"Ø RELIEF VALVE, RUN TOAD CONNECTION (TYP.) (SEE PLANS FOR SIZE.)

1/4" BALL VALVE. PUMP (TYP.)

2" CAST IRON PIPE, COUPLING (TYP. AT UNIT CONNECTION)

REDUCING UNION (TYP.)

3" MIN.

1/2" CW TO TRAP, SEISMIC SOV (OR EQUAL) PIPE CLAMP

1/2" CW DROP (QTY. AS NEEDED. TO FLOOR DRAIN, MULTIPLE TRAPS)

14" TRAP PRIMER, UNION (TYP.)

1/2" CW TO TRAP, "JR. SMITH" 3955 FIXED AIR GAP, "JR. SMITH" 3955

1/2" BALL VALVE, "JR. SMITH" 3955

3" MIN.

UNINSULATED PIPE UNINSULATED PIPE

3" = 1'-0" 3/4" = 1'-0" 1/4" = 1'-0"

Pipe hanger details

Fixed air gap fitting detail

Condensate trap detail

Condensate trap detail

Pipe hanger support details

Roof A/C gas connection

Trap primer to floor drain

TYPICAL VENT PIPE THRU ROOF

Water heater details

Plywood roof deck

Flashings

Concrete pad

Seismic sov

Superstrut C-710

Superstrut C-708-U

GAS RISER IN WALL SEE

PIPE SUPPORT, B-LINE (OR EQUAL) DB610 MOLDED RECYCLED RUBBER PIPE

Pipe support, B-Line (or equal) DB610 molded recycled rubber pipe

Cable clamps (typ. at superstrut

Rope thimble in loop

Max. load = 300 lbs.

Max. load = 300 lbs.
LUMINARE SCHEDULE

TAG I MANUFACTURER & CATALOG NUMBER DESCRIPTION LUMI TYPE COLT VETTA REMARKS
A1 BID SET
BID SET NOT FOR CONSTRUCTION
A2 BID SET
BID SET NOT FOR CONSTRUCTION
B LIGHTFOOT LIGHTFOOT 5191-36-480-10 (05/20) 500476000 23212 21
C RELIANCE RELIANCE MKG 607500-480-17 (05/20) 500476000 23212 21
D INDUCOM INDUCOM 101000720 3000030 19 19
E INDUCOM INDUCOM 101000720 3000030 19 19
F SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
G SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
H SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
I SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
J SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
K SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
L SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
M SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
N SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
O SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
P SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
Q SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
R SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
S SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
T SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
U SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
V SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
W SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
X SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
Y SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17
Z SURFACE ADDRESSABLE SURFACE ADDRESSABLE 101000720 3000030 17 17

NOTES
1. ARCHITECT TO SELECT FINISH
2. INSTALL REMOTE POWER, VERIFY LOCATION IN FIELD

FIRE ALARM GENERAL NOTES
1. PURCHASED AND INSTALL FIVE (5) FIRE ALARM SYSTEMS IN COMPLIANCE WITH THE NFPA 72, 2018. FIRE ALARM SYSTEMS SHALL BE TESTED BY THE DISTRIBUTION CENTER TO MEET THE REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE.
2. FIRE ALARM SYSTEMS SHALL BE TESTED AT THE INSTALLATION SITE TO MEET THE REQUIREMENTS OF THE CALIFORNIA BUILDING CODE TITLE 24, PART 2.
3. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
4. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
5. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
6. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.

MEEP COMPONENT ANCHORAGE NOTES
1. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
2. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
3. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
4. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.

GENERAL NOTES
1. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
2. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
3. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
4. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.

FIRE ALARM RECORD DOCUMENTS CABINET
1. FIRE ALARM SYSTEM DOCUMENTS CABINET SHALL BE INSTALL IN THE SYSTEM CONTROL UNIT.
2. FIRE ALARM SYSTEM DOCUMENTS CABINET SHALL BE INSTALL IN THE SYSTEM CONTROL UNIT.
3. FIRE ALARM SYSTEM DOCUMENTS CABINET SHALL BE INSTALL IN THE SYSTEM CONTROL UNIT.
4. FIRE ALARM SYSTEM DOCUMENTS CABINET SHALL BE INSTALL IN THE SYSTEM CONTROL UNIT.

MEP COMPONENT ANCHORAGE NOTES
1. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
2. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
3. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
4. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.

FIRE ALARM GENERAL NOTES
1. PURCHASED AND INSTALL FIVE (5) FIRE ALARM SYSTEMS IN COMPLIANCE WITH THE NFPA 72, 2018. FIRE ALARM SYSTEMS SHALL BE TESTED BY THE DISTRIBUTION CENTER TO MEET THE REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE. REFER TO THE APPROPRIATE CODE FOR TESTING REQUIREMENTS OF THIS MEASURE.
2. FIRE ALARM SYSTEMS SHALL BE TESTED AT THE INSTALLATION SITE TO MEET THE REQUIREMENTS OF THE CALIFORNIA BUILDING CODE TITLE 24, PART 2.
3. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
4. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
5. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.
6. All fire alarm system equipment shall be tested in compliance with the requirements of NFPA 72, 2018, Chapter 12.

MEP COMPONENT ANCHORAGE NOTES
1. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
2. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
3. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
4. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.

GENERAL NOTES
1. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
2. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
3. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
4. All equipment shall be anchored in accordance with the requirements of NFPA 72, 2018, Chapter 12.
DUCTLESS SPLIT SYSTEM SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>VOLT</th>
<th>PHASE</th>
<th>MCA</th>
<th>MOC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO1</td>
<td>157</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BC CONTROLLER SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>VOLT</th>
<th>PHASE</th>
<th>FLA</th>
<th>MCA</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUIPMENT SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>VOLT</th>
<th>PHASE</th>
<th>EPA</th>
<th>MCA</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAN SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>VOLT</th>
<th>PHASE</th>
<th>HP</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIR CONDITIONING/DOAS SCHEDULE

<table>
<thead>
<tr>
<th>UNIT</th>
<th>VOLT</th>
<th>PHASE</th>
<th>MCA</th>
<th>MOC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OUTLET BOX
ADJUSTABLE BOX SUPPORT
(2) #6 x 3/4" WOOD SCREWS, TYP EACH END
CEILING LUMINAIRE
PLASTER RING
(1) 8d TOENAIL EACH END
2x6 BLOCKING BETWEEN JOINTS. PROVIDE (2) PER FIXTURE
(2) 16d EACH END CEILING LUMINAIRE
LOCKNUT AND FLAT WASHER, TYP OF (2) 3/8" BOLT AND FLAT WASHER.
PROVIDE (2) FOR 1' WIDE LUMINAIRES AND (4) FOR 2' OR WIDER LUMINAIRES

1. SECURE FIXTURES TO T-BAR SYSTEM WITH (2) 1/8" DIAMETER ZINC PLATED "TEK" SCREWS AT EACH END. POINTED SHEET METAL SCREWS ARE NOT ACCEPTABLE. DRILL FIXTURES AND T-BAR RUNNER AS REQUIRED. LOCATE SUCH THAT SCREWS DO NOT INTERFERE WITH DOOR OPERATION.

2. 12 GA. GALVANIZED STEEL HANGER WIRES TO STRUCTURAL MEMBER, TYPICAL. PROVIDE 2 SLACK WIRES ON DIAGONAL CORNERS FOR 2x4 FIXTURES OR SMALLER WHEN MOUNTED IN HEAVY DUTY CEILINGS. PROVIDE 4 WIRES ON 4 CORNERS OF FIXTURES WHEN LARGER THAN 2x4 OR WEIGHING MORE THAN 56lbs. PROVIDE 4 TAUT WIRES IN INTERMEDIATE DUTY CEILINGS. WHERE FIXTURES ARE INSTALLED END TO END, AND HANGER TABS OF BUTTING FIXTURES ARE IN CONTACT WITH EACH OTHER, ONE WIRE MAY BE SHARED BY BUTTING FIXTURES.

3. SUSPENDED FIXTURE SUPPORT (AT T-BAR CEILING)
A REDUCED PRINT SCALE ACCORDINGLY IF THIS SHEET IS NOT 30"x42" IT IS 3" = 1'-0".